品牌 | 其他品牌 | 應(yīng)用領(lǐng)域 | 綜合 |
---|
Pioneer-ONE系列飛秒激光時(shí)域熱反射測(cè)量系統(tǒng)(TDTR)可用于研究各種多層膜結(jié)構(gòu)熱物性,包括納米薄膜材料和液體材料的熱導(dǎo)率、熱容;固-固材料界面、固-液材料界面,微結(jié)構(gòu)界面熱導(dǎo);及各種微結(jié)構(gòu)熱物性等。
在現(xiàn)代工業(yè)中,材料的熱性能,尤其是熱物理性能,變得越來(lái)越重要。這些性能在高性能微電子器件的散熱材料、可持續(xù)能源中的熱電材料、節(jié)能領(lǐng)域的絕熱材料以及渦輪葉片的熱障涂層(TBC)等方面都有廣泛應(yīng)用。在各種熱物性參數(shù)中,導(dǎo)熱系數(shù)尤為關(guān)鍵。隨著電子設(shè)備設(shè)計(jì)的進(jìn)步和對(duì)有效熱管理需求的增加,納米薄膜材料得到了廣泛應(yīng)用。納米級(jí)薄膜的厚度通常小于塊體材料的典型晶粒粒徑,因此其熱物理性能與塊體材料有顯著不同。在納米級(jí)厚度范圍內(nèi),精確測(cè)量熱擴(kuò)散系數(shù)和導(dǎo)熱系數(shù)變得越來(lái)越迫切。
飛秒激光時(shí)域熱反射(Time-Domain Thermoreflectance, TDTR)技術(shù)是?種基于飛秒超快激光泵浦探測(cè)(pump-probe)技術(shù)的非接觸式導(dǎo)熱測(cè)量方法。相比其他導(dǎo)熱測(cè)量技術(shù), TDTR是目前少數(shù)幾種可以同時(shí)測(cè)量納米薄膜熱導(dǎo)率和界面熱阻的技術(shù)。該技術(shù)用于研究多種材料的微觀熱輸運(yùn)性質(zhì),包括納米薄膜材料和液體材料的熱導(dǎo)率,固-固材料界面和固-液材料界面的熱導(dǎo),以及在極低溫(4K)和超高壓(10GPa)條件下的熱輸運(yùn)。此外,TDTR還對(duì)短脈沖和高頻加熱情況下的非傅立葉模型進(jìn)行了解析計(jì)算,并從量子理論出發(fā)分析了微尺度能量輸運(yùn)過(guò)程。
圖1 典型樣品結(jié)構(gòu),包括金屬薄膜傳感層和其他可能的基底材料
導(dǎo)熱特性的測(cè)量有兩大必要因素:熱流的施加(加熱方式)和溫度的測(cè)量,對(duì)這兩大因素的選取和控制決定了測(cè)量方法的精度和適用范圍。TDTR方法采用脈沖激光加熱、脈沖激光測(cè)溫的測(cè)量方式,實(shí)現(xiàn)測(cè)量溫度隨時(shí)間變化的超高時(shí)間分辨率,時(shí)間分辨率zui高可達(dá)100飛秒(10^-15秒)。測(cè)量所使用的典型樣品結(jié)構(gòu)如圖1所示,為保證樣品吸收和反射激光的效果,通常在被測(cè)樣品表面制備厚度約100納米的金屬薄膜,通常為鋁、金、銅等金屬。儀器利用一束飛秒脈沖激光照射樣品表層金屬薄膜,金屬薄膜吸收激光能量并將其轉(zhuǎn)化為熱能從而對(duì)樣品進(jìn)行加熱,加熱過(guò)程在皮秒(10^-12秒)尺度上發(fā)生,隨后熱能通過(guò)熱擴(kuò)散向樣品內(nèi)部傳遞,金屬表面溫度隨時(shí)間逐漸回落。由于金屬的反射率與其溫度有關(guān),利用該特性儀器通過(guò)測(cè)量另?束激光的反射強(qiáng)度變化反推獲得金屬表面溫度隨時(shí)間的變化曲線,該曲線反應(yīng)了被測(cè)樣品的導(dǎo)熱性質(zhì),通過(guò)儀器內(nèi)置的擬合算法可以獲得被測(cè)樣品的熱導(dǎo)率、熱擴(kuò)散率、吸熱系數(shù)、界面熱阻等熱物性參數(shù)。
典型數(shù)據(jù)展示
圖2 六種基底材料與Al傳感層組成的兩層結(jié)構(gòu)樣品的相位差信號(hào)和幅值信號(hào)及擬合曲線
數(shù)據(jù)結(jié)果顯示,AlN和SrTiO3基底與Al傳感層之間的界面熱導(dǎo)均接近110 MW/m2K,
其他四種常見基底材料與Al傳感層之間的界面熱導(dǎo)的數(shù)值分布在140–200 MW/m2K中。